Southampton

The link between NDT and structural integrity: potential impacts on regulations

Janice Dulieu-Barton Ole Thomsen, Daniel Bull, Kate Devereux (UoS) Kevin Potter, Robert Smith (University of Bristol) Richard Butler, Andrew Rhead (University of Bath)

Modernising Composite Regulations

Blackburn bus station Courtesy of Millfield Composites Group And Millfield Composites www.southampton.ac.uk/CompositeRegulations

Southampton

'Building block' approach to certification

Feasibility study aircraft corner joint

2.74 mm wide

Wrinkle defect

5 mm

TSA: Inner corner after 1st, 2nd, 3rd and 4th load (delamination failure at 45 kN)

After 3^{rd} load

After 4th load

TSA confirms that damage growth and delamination evolve from the centre $\Delta T = 0.2^{\circ}$ C peak around wrinkled region, 0.07° C background Stress concentration factor about 3

ϵ_{vv} immediately prior to load drop 44.1 kN

 ε_{yy} strain 2.04% peak around wrinkled region, 0.67% background

Strain concentration factor about 3

Southampton How far did we get – feasibility demonstrated?

- Composite substructure modelling and testing conducted successfully
- X-ray CT scan identified sub-surface wrinkle in spar corner
- TSA and LIDIC capture sub-surface wrinkle defects local stress and strain fields & load redistribution during initiation and progression of delamination
- High-fidelity FE model accurately predicts onset of delamination failure – good correspondance between predicted (43 kN) and observed (44.1 kN) failure loads
- Next steps upscale.....

Structures 2025 Funded EPSRC -£1.2M Industry £1M

Imaging Systems -Full-field data -DIC

-TSA

-High spatial resolution -High temporal resolution

Load frames:

-Flexible set up

-Large structures

-Modular design

-Multi axial loading

Southampton

Strong floor

- 1m thick reinforced concrete
- 30 x 15 m
- 1m spaced strong points
- 500 kN vertical 250 kN

Actuators:

-Large load range -Synchronous control -Flexibility

Hydraulics

- 1000 l/min ring main

1951

- Large deflections
- High loads
- 'Plug and play'
- Complex loading

EPSRC

Engineering and Physical Sciences Research Council

Southampton

Structures 2025

- A single integrated system
- Unique internationally
- Assessment of interactions between material failure mechanisms/modes and structural stiffness/strength driven failure modes
- Hitherto unattainable level of physical realism and fidelity

